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Moore (1979) demonstrated that the cumulative influence of small nonlinear effects on
the evolution of a slightly perturbed vortex sheet is such that a curvature singularity
can develop at a large, but finite, time. By means of an analytical continuation of
the problem into the complex spatial plane, we find a consistent asymptotic solution
to the problem posed by Moore. Our solution includes the shape of the vortex sheet
as the curvature singularity forms. Analytic results are confirmed by comparison
with numerical solutions. Further, for a wide class of initial conditions (including
perturbations of finite amplitude), we demonstrate that 3

2
-power singularities can

spontaneously form at t = 0+ in the complex plane. We show that these singularities
propagate around the complex plane. If two singularities collide on the real axis, then
a point of infinite curvature develops on the vortex sheet. For such an occurrence we
give an asymptotic description of the vortex-sheet shape at times close to singularity
formation.

1. Introduction
This paper is concerned with the asymptotic description of inviscid fluid flows with

vortex sheets. Inter alia, we present a consistent asymptotic solution for the formation
of Moore curvature singularities. The methodology that we adopt has application to
other ill-posed free-surface flows.

1.1. Kelvin–Helmholtz instability

One of the generic features of shear flows at high Reynolds numbers is Kelvin–
Helmholtz (K–H) instability. Well known examples where K–H waves develop include
(a) the instability of the mixing layer between two parallel streams of different speed,
and (b) the instability of the vortex sheet centred on the dividing streamline of a
separated flow. Further, it has been suggested that K–H instability plays a role in
maintaining turbulent flow by causing the break-up of shear layers (e.g. Lundgren
1982).

A key feature of K–H instability on an infinitesimally thin vortex sheet is that linear,
sinusoidal, disturbances with a wavenumber k, have a growth rate proportional to k.
Hence, because there is no length scale in the problem, there is no fastest growing
wave and the linear problem is ill-posed. The solution to a linearized problem for
the shape of the vortex sheet can, therefore, develop a singularity within a finite time
even if the initial data are analytic (Saffman & Baker 1979).
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In order to determine whether such a finite-time singularity is an artifact of
linearization, Moore (1979) studied the nonlinear evolution of a vortex sheet for a
small initial disturbance that was sinusoidal. He found that the inclusion of nonlinear
effects did not prevent the formation of a singularity after a finite time. In particular
he predicted that close to the singularity, the curvature of the sheet was proportional
to |Γ − Γs|−1/2, where Γ is the circulation in the sheet measured from a fixed
reference particle and Γs is the position of singularity. Although Moore’s analysis
involves an approximation, the result that the curvature of the vortex sheet develops
a singularity after a finite time was supported by Meiron, Baker & Orszag (1982,
henceforth referred to as MBO), who analysed a power series solution using series
extension techniques. This result was confirmed by a direct numerical solution of the
Birkhoff–Rott boundary integral equation which describes the motion of the sheet
(Krasny 1986a); the growth of rounding error due to the linear ill-posedness of the
problem was controlled by spectral filtering. Shelley (1992) refined and extended these
calculations. For the most part he found the same type of singularity, but could not
obtain precise agreement with certain details of Moore’s (1979) analysis.

An improved understanding of the formation of the singularity is important because
the K–H instability mechanism can lead to curvature singularities in problems that
at first sight look as if they are unaffected by K–H instability. For instance, Pugh
(1989) studied the rise of two-dimensional, inviscid bubbles under a Boussinesq
approximation. For bubbles that start from rest, he showed numerically that after a
finite time, a curvature singularity develops at the interface between the two fluids.
The singularity arises because the vortex sheet that exists at the interface can support
K–H instability (although it should be emphasized that there is no visual evidence of
short-wavelength waves in the interface shape prior to the formation of the curvature
singularity). Pugh (1989) has similarly demonstrated that a curvature singularity can
form when a point-vortex pair approaches a stably stratified interface, while both
he and Siegel (1990) have shown that a singularity can form in the Rayleigh–Taylor
instability of an interface between two fluids of different, non-zero density. Indeed,
Siegel (1990, private communication) has noted that singularities are almost certain
to form in unsteady interfacial wave problems, the exception seems to be when
the interface is between a vacuum and a fluid (see also Ebin 1987, 1988; Tanveer
1993). These conclusions are supported by Baker, Caflisch & Siegel (1993) who
have performed numerical calculations for a wide range of Atwood numbers for the
Rayleigh–Taylor instability problem. We also note that singularity formation is not
restricted to two dimensions. For instance, Pugh (1989) has shown that a singularity
forms on a rising, axisymmetric, Boussinesq bubble, while Nie & Baker (1998)
and Nitsche (1998) have demonstrated singularity formation in other axisymmetric
problems. There is also some evidence that singularities form on three-dimensional
vortex sheets (Ishihara & Kaneda 1994, 1995).

The precise nature of the solution after singularity formation in any of these cases
has yet to be elucidated in detail. However, it is known for single-signed vortex sheets
both that a classical weak solution to the two-dimensional Euler equations exists for
all time (Delort 1991; Majda 1993), and that solutions based on the vortex ‘blob’
method converge in the limit of zero blob size to classical weak solutions (Liu &
Xin 1995). Further, numerical solutions of models invoking regularization agents
such as finite-sheet thickness (e.g. Moore 1978; Baker & Shelley 1990), blobs (e.g.
Krasny 1986b) or viscosity (e.g. Tryggvason, Dahm & Sbeih 1991), have been found
to converge to the vortex-sheet solution at times before a singularity forms in the
vortex-sheet model; while after that time, the regularized solutions develop spirals
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that appear to be self-similar.† Our hope is that the following analysis, especially
that in § 5, will be a contributory step in understanding, inter alia, the formation and
evolution of these rolled-up spirals in the limit of vanishingly small sheet thickness,
blob size or viscosity. Indeed, if the correct weak limit can be identified, then it may be
possible to develop modified numerical methods for vortex-sheet motion that retain
the vortex sheet as a useful approximation of high-Reynolds-number thin shear layers
at times after singularity formation.

1.2. Applicability of the vortex-sheet model

Since the vortex-sheet model is mathematically ill-posed for general classes of initial
conditions, a natural question to ask is under what circumstances does the vortex-sheet
model provide useful approximations of physical behaviour? Certainly vortex-sheet
solutions can only be asymptotic approximations if the dominant length scale of the
flow is much larger than the thickness of the assumed underlying shear layer; we will
assume that this condition is satisfied. We also know that the vortex-sheet problem is
well-posed for a finite time if the initial data lie in a certain class of analytic functions
(Sulem et al. 1981; Caflisch & Orellana 1986; Duchon & Robert 1988). We believe
that our work is relevant to this class of analytic initial conditions, and moreover
we note that this class of initial conditions includes ‘noisy’ initial conditions as long
as the noise can be described by small, appropriate analytic perturbations. For a
discussion of the latter point in the context of noise in numerical solutions see the
work of Caflisch & Lowengrub (1989). However, when such analytic noise is present
(even if of relatively small amplitude), it can play a key rôle in singularity formation
if the strip of analyticity in the complex Γ -plane of the noise is thin.

Finally in our discussion of applicability, we note that if an initial condition is
contaminated by noise that is non-analytic (e.g. the Fourier transform of the noise
decays in wavenumber space, k, slower than e−k/kd for some constant kd), then our
analysis is not relevant since a singularity is likely to form almost immediately. In
such cases the presence of regularizing effects, such as viscosity, will play a crucial
rôle in determining the motion.

1.3. Outline of methodology

In his original analysis, Moore (1979) solved the Birkhoff–Rott equation in terms
of the natural independent variables, i.e. the (real) circulation, Γ , and the time, t.
However, an alternative approach is to continue analytically the solution into the
complex Γ -plane, identify key aspects of the analysis away from the real axis, and
then to continue analytically the solution back to the real axis (Moore 1985; Caflisch
& Orellana 1986). While this procedure may seem a little exotic, one of its advantages
is that it provides a convenient way of analysing the nonlinearity that is often central
to singularity formation. Indeed, the fact that nonlinear effects can be crucial follows
from the observation that, in the case of a small sinusoidal perturbation, the solution
to the linearized Birkhoff–Rott equation exists for all time.

Moreover, an approach based on analytic continuation into the complex plane has
yielded important results in the past. For instance, using Moore’s (1985) approximate
differential equations, Caflisch & Orellana (1986) proved existence almost up to the
time of singularity formation for initial data close to those of a flat sheet, while Duchon
& Robert (1988) and Caflisch & Orellana (1989) have constructed exact solutions

† Surface tension (e.g. Pullin 1982; Baker & Nachbin 1998) is a less effective regularization
because singularities can still develop as a result of the self-intersection of the interface (Hou,
Lowengrub & Shelley 1997).
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to the Birkhoff–Rott equation which display singularity formation in physical space.
Also, by using an alternative nonlinear approximation to the Birkhoff–Rott equation,
Caflisch & Semmes (1990) described singularity formation on a vortex sheet up to
and including the time at which the physical singularity forms.

One of the conclusions of this earlier work (see also § 5), is that there is a family
of possible physical singularities. The question then arises of which ones are likely
to be observed in practice. By extending into the complex plane for early times, we
show that for a wide class of initial conditions, nonlinear effects ensure that at times
t = 0+, the analytically-continued curvature develops singularities proportional to
(Γ −Γs)−1/2, where Γs(t) is the position of a singularity in the complex plane. As time
evolves such singularities move around the complex plane. The first time at which a
singularity intersects the real Γ -axis gives the time at which a singularity forms in
the physical problem. We argue that the formation of these (Γ − Γs)−1/2 curvature
singularities at t = 0+ in the complex plane is in some sense generic, and explains why
such singularities proportional to |Γ − Γs|−1/2 are observed in the physical problem
at later times.

A key feature in our analysis is that even if the initial disturbance is very small
in physical space, then there are regions in the complex plane where the solution is
nonlinear even at t = 0+. As a result of this observation, we are able to construct a
self-consistent asymptotic solution to the problem that Moore (1979, 1985) studied,
i.e. the evolution of an initially small sinusoid. Certain parts of our analysis are
simply a re-expression of Moore’s (1979, 1985) solution in a slightly more formal
asymptotic language. However, we are also able to (a) identify where the 3

2
-power

singularities originate from, (b) obtain an asymptotic description of the shape of
the sheet as the singularity forms, and (c) suggest an explanation of certain results
observed numerically for larger initial amplitudes. We note that the existence of a
self-consistent asymptotic solution to Moore’s (1979) problem is not surprising since
the amplitude of the disturbance is still small at the moment that the singularity
forms (cf. the rising Boussinesq bubble, etc.).

1.4. Outline of the paper

In § 2 we formulate the problem in the complex plane. Using a combined asymptotic
and numerical argument, we show that for a wide range of initial conditions, singu-
larities can develop at t = 0+; these singularities are consistent with the curvature
singularity that Moore (1979) predicted would form on the real axis at a later time.
Indeed, as time evolves the singularities that develop at t = 0+ move around the
complex plane and may intersect the real axis. In § 3 we show that this picture is
consistent with numerical solutions of the Birkhoff–Rott equation.

In § 4 we find an asymptotic solution to the problem where the initial disturbance
is a small sinusoid. For t = O(1) the analysis is based on an observation in § 2 that
Moore’s (1985) equations are asymptotic approximations far from the real Γ -axis. We
follow previous authors and assume that the initial condition is antisymmetric about
Γ = 0. A consequence of this simplification is that key features of the solution in the
complex Γ -plane can be obtained by studying the real hyperbolic equations that apply
on the imaginary Γ -axis (Moore 1985). These hyperbolic equations are solved both
numerically and analytically. In particular, by means of a Hodograph transformation
(Professor D. W. Moore and Professor J. T. Stuart, private communication), an
expression is obtained for the long-time behaviour of the ‘over-turning’ singularity.
However, solutions to these hyperbolic equations are only asymptotic approximations
to the full problem while the singularity is far from the real Γ -axis. At times when
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this condition is violated a different asymptotic approximation is necessary. At such
times we find that the appropriate rescaling of the Birkhoff–Rott equation leads to
a linearized problem, the solution of which specifies the shape of the vortex sheet at
times close to singularity formation.

Finally, in § 5 we show that even if the vortex sheet has been deformed nonlinearly,
at times close to the formation of a physical singularity, the shape of the sheet in the
neighbourhood of the singularity is described by a linear equation. As a result it is
possible to predict certain properties of singularity formation even when the initial
perturbation is not small. This enables us to propose an alternative explanation of
the observations that led Shelley (1992) to suggest that there might be a change in
nature of the singularity when there is a large deformation of the vortex sheet.

2. Formulation and early-time singularity formation
2.1. Formulation

The evolution of a two-dimensional vortex sheet is described by the Birkhoff–Rott
integro-differential equation (e.g. Birkhoff 1962)

∂z(ξ, t)

∂t
=

1

2πi
−
∫ ∞
−∞

Γξ(ξ̂) dξ̂

z(ξ, t)− z(ξ̂, t) , (2.1)

where the overbar denotes a complex conjugate, the integral is a Cauchy principal
value, ξ is a Lagrangian marker variable, t is time, z(ξ, t) = x(ξ, t) + iy(ξ, t) is a
complex coordinate giving the position of the vortex sheet, and Γ (ξ) is the circulation
in the sheet measured between the point with coordinate z and a reference particle.
For the most part, a subscript that is a variable will refer to differentiation with
respect to that variable, e.g. Γξ(ξ) = dΓ/dξ. The independence of Γ of time (due to
Kelvin’s circulation theorem) means that, if appropriate, the Birkhoff–Rott equation
can be rewritten so that Γ is the independent variable.

Except where stated otherwise, we will assume for simplicity that the sheet is 2π-
periodic, i.e. that z(ξ + 2π, t) = 2π + z(ξ, t). This condition can for the most part
be relaxed. For instance the analysis follows through for a disturbance to a uniform
sheet that is non-periodic but decays sufficiently fast as |ξ| → ∞; however, this
generalization is at the expense of slightly more complicated algebra.

The choice of period sets the length scale of the motion. Further, for the motion
of the sheet to be periodic, the vortex-sheet strength must also be 2π-periodic. If
we normalize the flow so that the average jump in the tangential velocity across
the vortex sheet is unity, then this implies that Γ (ξ + 2π) = 2π + Γ (ξ). Given these
periodicity properties, (2.1) can be rewritten as

∂z(ξ, t)

∂t
=

1

4πi
−
∫ 2π

0

Γξ(ξ̂) cot
(

1
2
(z(ξ, t)− z(ξ̂, t))

)
dξ̂ . (2.2)

We wish to study the solution to (2.2) in the complex ξ-plane. To this end it is
helpful to write the Cauchy principal value as a contour integral:

−
∫ 2π

0

Γξ(ξ̂) cot
(

1
2
(z(ξ, t)− z(ξ̂, t))

)
dξ̂ =

∫
C
Γξ(ξ̂) cot

(
1
2
(z(ξ, t)− z(ξ̂, t))

)
dξ̂+

2πiΓξ(ξ)

zξ(ξ, t)
,

(2.3)

where the contour C runs from ξ̂ = 0 to ξ̂ = 2π, and is assumed to be deformed
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beneath a simple pole at ξ̂ = ξ. It is convenient to write

z(ξ, t) = ξ + s(ξ, t) , Γ (ξ) = ξ + σ(ξ) , (2.4)

so that the 2π-periodic parts of z and Γ are identified as s and σ respectively.
Following Caflisch & Orellana (1986), we introduce the ∗ operator defined by

s∗(ξ, t) = s(ξ, t) . (2.5)

With this definition, s∗(ξ, t) is an analytic function of ξ if, and only if, s(ξ, t) is an
analytic function of ξ. Further: (a) if s and s∗ are known in the upper half-ξ-plane,
then s is known in the whole ξ-plane, (b) if s is real when ξ is real, then s∗ = s
for all ξ, and (c) when ξ is real, then s∗(ξ, t) = s(ξ, t). The last property means that
the Birkhoff–Rott equation (2.2) can be analytically continued into the upper half
complex-ξ-plane as

∂s∗(ξ, t)
∂t

=
1

4πi

∫
C
(1 + σξ(ξ̂)) cot

(
1
2
W (ξ, ξ̂, t)

)
dξ̂ +

(1 + σξ(ξ))

2(1 + sξ(ξ, t))
, (2.6a)

where

W (ξ, ξ̂, t) = ξ − ξ̂ + s(ξ, t)− s(ξ̂, t) . (2.6b)

Just how far into the upper half-plane we can extend the equation depends on the
analytic properties of the integral in (2.6a). As Im(ξ) increases these properties depend
both on whether W is analytic on the integration contour and on whether W is zero
at some point on the contour (since if W = 0 at some point, then account must be
taken of the contribution from the pole as it crosses the contour). For simplicity we
will restrict attention to those points of the complex ξ-plane such that, as ξ varies,
the contour can be deformed both so that W 6= 0 on the contour and so that W
is analytic on the contour. Also, unless stated otherwise, and in order to fix ideas,

we shall take the contour to run from ξ̂ = 0 to ξ̂ = 2π along the real ξ̂-axis. The
region of analytic continuation will then be assumed to extend far enough into the
upper half-plane for our purposes; we will rely on subsequent analysis and numerical
calculations to confirm this assumption a posteriori.

We next rewrite (2.6a) in the alternative form

∂s∗

∂t
=

σξ − sξ
2(1 + sξ)

+ J(ξ, t) , (2.7a)

where

J(ξ, t) =
1

4πi

∫
C
(1 + σξ(ξ̂))

(
i + cot

(
1
2
W (ξ, ξ̂, t)

))
dξ̂ . (2.7b)

Similarly it follows from taking the complex conjugate of (2.2) before analytically
continuing into the complex plane, that

∂s

∂t
= − σξ − s∗ξ

2(1 + s∗ξ)
+K(ξ, t) , (2.8a)

where

K(ξ, t) = − 1

4πi

∫
C
(1 + σξ(ξ̂))

(
i + cot

(
1
2
W ∗(ξ, ξ̂, t)

))
dξ̂ = J∗(ξ, t)− 1 . (2.8b)

Equations (2.7) and (2.8) highlight the significance of points ξ = ξd(t) (if they exist)
where either one, or both, of the conditions

1 + sξ(ξd, t) = 0 and 1 + s∗ξ(ξd, t) = 0 (2.9)
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hold – points that we shall see are important in the formation of singularities in the
upper half complex ξ-plane (singularity formation in the lower half-ξ-plane follows
from the definition of s∗ above). However, before we employ (2.7) and (2.8) to such
ends (see §§ 2.4–2.5), we note that another advantage of this form of the equations is
that it is possible to obtain bounds on J(ξ, t) and K(ξ, t) when Im(ξ)� 1. Therefore,
we first digress in order to derive an asymptotic approximation of (2.7) and (2.8) that
is valid when Im(ξ) � 1. This approximation will be used both to study singularity
formation for the initial condition used by MBO (§ 2.3), and to find an asymptotic
solution valid for small-amplitude disturbances (§ 4.1).

2.2. Simplified equations far from the real ξ-axis

In order to estimate the magnitude of J and K when Im(ξ) � 1, we need to
understand the behaviour of W = Wr + iWi, and thence cot( 1

2
W ), for Im(ξ) � 1.

From (2.6b), it is tempting to conclude that Wi � 1 when Im(ξ) � 1 (and similarly
for W ∗). This is desirable since then∣∣i + cot

(
1
2
W
)∣∣ ∼ 2 exp(−Wi)� 1 , (2.10a)

and ∣∣i + cot
(

1
2
W ∗)∣∣ ∼ 2 exp(−W ∗

i )� 1 . (2.10b)

However this need not be the case if s(ξ, t) (or s∗(ξ, t)) grows faster than ξ as
Im(ξ) → ∞. For instance, in the case of the initial condition s(ξ, 0) = εκ sin ξ (see

(2.21)), there will be a range of Re(ξ) where for all fixed ξ̂ on the contour C, Wi → −∞
as Im(ξ)→ ∞. (This is of course not to say that for fixed large Im(ξ) it may not be
possible to deform the contour so that Wi � 1.)

For the purposes of § 2.3 and § 4.1 it is sufficient to note that in regions of the
complex plane where

Im(ξ)� 1 , s(ξ, t) = O(1) and s∗(ξ, t) = O(1) , (2.11)

a straightforward estimate using (2.10) shows that for an integration contour C along

the real ξ̂-axis,

J = O(exp(−Im(ξ))) and K = O(exp(−Im(ξ))) . (2.12)

In deriving (2.12) we have also assumed that s(ξ̂, t) = O(1) and s∗(ξ̂, t) = O(1) on C,
but this is not restrictive. Regions satisfying (2.11) arise in § 2.3 essentially because
s(ξ, 0) = s∗(ξ, 0) = 0, and in § 4.1 because of the smallness of the initial amplitude ε.

When condition (2.11) is satisfied, we conclude that a consistent leading-order
asymptotic approximation to the Birkhoff–Rott equation is

∂s∗

∂t
=

σξ − sξ
2(1 + sξ)

,
∂s

∂t
= − σξ − s∗ξ

2(1 + s∗ξ)
, (2.13)

where s and s∗ are functions of ξ and t. We note that this asymptotic approximation
can also be derived when the vortex sheet is not 2π-periodic, but that under condition
(2.11) the asymptotic error is then O(1/Im(ξ)), rather than the error of O(exp(−Im(ξ)))
that follows from (2.12).

Caflisch & Orellana (1986) and Caflisch, Orellana & Siegel (1990) have previously
derived equivalent equations by employing the upper, s+, and lower, s−, analytic
components of s (s ∼ s− for Im(ξ) � 1). An advantage of the present approach is
that it is evident that (2.13) is an asymptotic approximation in those parts of the
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complex plane where Im(ξ) � 1 and s(ξ, t) = O(1). In particular, we note that the
approximation remains asymptotic for ξ close to points ξd(t) satisfying one or both
the conditions (2.9).

2.3. An example of a small-time solution

For the rest of this section we will concentrate on understanding how singularities
can develop in the solution even when the initial condition is entire (i.e. analytic
in the whole complex ξ-plane). Moreover, we will not necessarily assume that the
amplitude of the initial disturbance to the vortex sheet is small (cf. Moore 1979,
1985; § 4), instead we will seek early-time solutions, and use t as our small asymptotic
parameter.

We start by considering the MBO initial condition

s(ξ, 0) = 0 , σξ(ξ) = ε cos(ξ) , (2.14)

and try to determine how singularities develop in s. As MBO show, this initial
condition has certain simplifying properties which enable many terms of a power
series solution in time to be calculated, the first two of which are

s = 1
2
iε t sin ξ − 1

8
ε t2 sin ξ (1 + ε cos ξ) + . . . . (2.15)

However, no matter how small the time, t � 1, this power series does not converge
far from the real ξ-axis. In particular, it follows from (2.15) that the series becomes
disordered when

exp(−iξ) ∼ ε−1t−1. (2.16)

The nature of condition (2.16) suggests that for small times, and far from the real
ξ-axis, a similarity solution should be sought of the form

η = εt exp(−iξ) , s = s0(η) + O(t) , s∗ = s∗0(η) + O(t) , (2.17)

where the region of the complex ξ-plane of interest is that where Im(ξ) ≈ − ln(εt)� 1.
Since s, s∗ = O(1) in scaling (2.17), condition (2.11) is satisfied. Hence, from (2.13),
(2.14) and (2.17), we find that to leading order

s0η = − 1

4(1− iηs∗0η)
, s∗0η =

1

4(1− iηs0η)
. (2.18)

The solution to (2.18) which matches with (2.15) as η → 0 is

s0η =
2− iη − (4− η2)1/2

4iη
, s∗0η =

2 + iη − (4− η2)1/2

4iη
. (2.19)

In order to fix the discussion, we assume that −π/2 < Re(ξ) < π/2; then Im(ξ) > 0
corresponds to Re(η) > 0. It follows from (2.19) that both s0η and s∗0η have square-root
singularities at η = 2. In other words, for t � 1 we have shown that s and s∗ have
3
2
-power singularities at

ξ ∼ i ln

(
2

εt

)
. (2.20)

Thus these singularities propagate in from infinity toward the real ξ-axis. They have
the same exponent (i.e. a square-root singularity in sξ) as the singularity that develops
at a later time on the real axis (MBO). We argue in § 2.5 that this is no coincidence.
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2.4. A class of small-time solutions

While the initial condition (2.14) has been used in several numerical calculations
(MBO; Shelley 1992), general conclusions cannot be drawn from the above analysis.
One way forward might be to generalize (2.14) to a family of initial conditions for
which singularities propagate in from infinity. Instead we will consider the class of
initial conditions such that at t = 0 there exists at least one finite point, ξ0 = ξd(0),
satisfying either one or both of the conditions (2.9). This class includes the initial
condition

s = εκ sin(ξ) , σ = 0 , (2.21)

used by Moore (1979) and Krasny (1986a), who took κ = i and κ = (i − 1) respec-
tively.†

For t� 1 a series solution to (2.7) and (2.8) can be found of the form

s = s0(ξ) + ts1(ξ) + . . . , s∗ = s∗0(ξ) + ts∗1(ξ) + . . . , (2.22)

where

s0(ξ) = s(ξ, 0) , s1(ξ) = − σξ − s∗0ξ
2(1 + s∗0ξ)

+K(ξ, 0) , (2.23)

and

s∗0(ξ) = s∗(ξ, 0) , s∗1(ξ) =
σξ − s0ξ

2(1 + s0ξ)
+ J(ξ, 0) . (2.24)

However, this series solution is not uniformly valid. In particular it breaks down near
points where (1 + s0ξ) = 0 and/or (1 + s∗0ξ) = 0. We consider two cases in detail.
First in § 2.4.1 we examine the solution near a point ξ = ξ0 where (1 + s0ξ) = 0 but
(1 + s∗0ξ) 6= 0 (the case where (1 + s∗0ξ) = 0 but (1 + s0ξ) 6= 0 is very similar and will
not be discussed separately). Subsequently in § 2.4.2 we assume that both (1 + s0ξ)
and (1 + s∗0ξ) are zero simultaneously at ξ = ξ0.

2.4.1. The case (1 + s0ξ(ξ0)) = 0 and (1 + s∗0ξ(ξ0)) 6= 0.

Near ξ = ξ0 it is necessary to introduce a rescaling. In order to determine the
appropriate asymptotic structure, we first expand the solution (2.22) as a power series
in ζ = ξ − ξ0:

s = s00 − ζ + 1
2
s02ζ

2 + . . .+

(
s∗01 − σ01

2(1 + s∗01)
+K00 + . . .

)
t+ . . . , (2.25a)

s∗ = s∗00 + s∗01ζ + 1
2
s∗02ζ

2 + . . .+

(
1 + σ01

2s02ζ
+ . . .

)
t+ . . . , (2.25b)

where

s0n =
∂ns0

∂ξn
(ξ0) , σ01 = σξ(ξ0) , and K00 = K(ξ0, 0) . (2.25c)

The non-uniformity arises from the leading coefficient of the O(t) term in (2.25b).
Further, from the coupled nature of (2.7) and (2.8), we expect that the leading
coefficient of the O(t) term in (2.25a) will play a determining rôle in the asymptotic
structure. This indicates that the key terms are those including s∗01 and s02. These terms
are comparable in (2.25) when ζ = O(t1/2); this in turn suggests that the appropriate

† Actually, Krasny (1986a) used κ = 1 − i, but we have shifted his profile through half a
wavelength to simplify comparison with Moore’s initial profile.
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asymptotic scaling for small ζ when t� 1 is

ζ = ηωt1/2 where ω =

(
2(1 + σ01)

s02(1 + s∗01)

)1/2

. (2.26)

In order to match with the series (2.25), s and s∗ need to be expanded as

s = s00 − ηωt1/2 +

(
1
2

+ J∗00 +
1 + σ01

(1 + s∗01)
A(η)

)
t+ . . . , (2.27a)

s∗ = s∗00 +
(
(1 + s∗01)B(η)− η)ωt1/2 + . . . . (2.27b)

It then follows from substituting (2.26) and (2.27) into (2.7) and (2.8) that

2A− ηAη = − 1

Bη
, B − ηBη =

1

Aη
. (2.28)

If the solution (2.27) is to match with (2.25), then we require that A→ η2 − 1/2 and
B → η as η → ∞. For the purposes of the subsequent numerical solution, we note
that further terms of this asymptotic boundary condition are straightforward to find;
for instance, correct to O(η−10):

A = η2 − 1

2
− 1

16η2
− 1

96η4
+

1

768η6
+

7

3840η8
+ O

(
1

η10

)
, (2.29a)

B = η +
1

4η
− 1

192η5
− 1

768η7
+

1

2560η9
+ O

(
1

η11

)
. (2.29b)

The system (2.28) and (2.29) has no free parameters; as such it is sufficient to
determine A and B uniquely. While we have been unable to find an analytic solu-
tion, it is quite straightforward to construct a numerical one. Moreover, because it
follows from (2.28) and (2.29) that A(η) = A(η), B(η) = B(η), and A(−η) = A(η),
B(−η) = −B(η), the numerical solution need only be found in one quadrant.

For our numerical calculations we found it convenient to differentiate (2.28) to
obtain a first-order system for the unknowns Aη and Bη:

Aηη =
ηA3

ηB
2
η

1 + η2A2
ηB

2
η

, Bηη =
AηB

2
η

1 + η2A2
ηB

2
η

. (2.30)

This system was integrated using a standard fourth-order Runge–Kutta method. As
an accuracy check we calculated the solution at the origin by integrating in along the
real axis from η = L+ i0, using (2.29) as the initial condition. We confirmed that the
error in the solution could be reduced to little more than rounding error by taking L
sufficiently large and by the choice of a sufficiently small step size in the Runge–Kutta
method. Accuracy tests were also performed by integrating to the origin along the
imaginary axis from η = 0 + iL.

From examining the calculated solution for Aη and Bη , we found no singularities
along the real or imaginary axis of η. Yet the results at the origin were different,
implying the presence of one or more singularities somewhere in the first quadrant.
In order to help determine the nature of such singularities, the integrals

I1(A) =
i

2π

∮
D
Aηηη

Aηη
dη and I2(A) =

i

2π

∮
D
ηAηηη

Aηη
dη , (2.31)

were evaluated for various closed contours, where the contour D was traversed twice.
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If A has a 3
2
-power singularity at η = η0, and if D encloses η0 but no other singularity

(e.g. if it is sufficiently close to η0), then it can be shown that

I1(A) = 1 and I2(A) = η0 . (2.32)

A search of the first quadrant using various circular and rectangular contours yielded
a singularity at

η0 ≈ 0.7359 + i0.4920 . (2.33)

While we quote the result to four significant digits, sensitivity tests based on varying
the step size, etc., suggested that our calculations were accurate to about ±10−8(1± i).
Further, the integral I2(B) indicated that, to within our error estimate, there was a
singularity in B at the same location. We found no other singularities in the first
quadrant for those cases when we initiated our numerical calculations at some place
far from the origin in the first quadrant. We shall refer to the singularity at (2.33)
and its mirror images in the other three quadrants as the primary singularities. Of
the singularities close to ξ0, it is one (or more) of these singularities that are on the
same Riemann sheet as the real physical axis, and lie closest to the real physical axis.

However, the primary singularities are not the only singularities in the solution to
(2.30). Other singularities were found on the different Riemann sheets associated with
the primary singularities. For instance, by integrating from infinity along the negative
imaginary axis and then proceeding into the first quadrant, another singularity was
found at 0.0829 + i0.1240. We also found its symmetric counterpart in the second
quadrant on the same Riemann sheet. To find the symmetric counterparts in the
third and fourth quadrants it is necessary to integrate from infinity along the positive
imaginary axis. We have not tried to find any other singularities, because it is only
the primary singularities that are of consequence in our study.

The singularities we found were all deduced to be 3
2
-power singularities, both

from the behaviour of the solutions and the consistent values of I1(A) and I1(B) for
different contours. In particular, (a) the solution always returns to its initial value,
within the accuracy of the calculation, after two circuits around a singularity, and (b)
the integrals I1 always evaluated to 1 within an accuracy of 10−9.

Moreover, such singularities are admitted by (2.28). For suppose that for |η−η0| � 1,
A and B expand as

A = A0 + A1(η − η0) + Ap(η − η0)
p + . . . , (2.34a)

B = B0 + B1(η − η0) + Bp(η − η0)
p + . . . , (2.34b)

where the Aj and Bj are constants, and 1 < p < 2. Then the expansions (2.34) are
solutions to (2.28) if certain consistency conditions are satisfied. For the coefficients
given in (2.34), these conditions are A1B1 6= 0 and

η2
0 = − 1

A2
1B

2
1

6= 0 , 2A0 = η0A1 − 1

B1

, B0 = η0B1 +
1

A1

, Ap = η0A
2
1Bp . (2.35)

Our numerical solution shows that p = 3
2

is selected. We note that this choice leads
to the least number of terms in the power series expansion (2.34) when nonlinear
interactions are taken into account.

2.4.2. The case (1 + s0ξ(ξ0)) = 0 and (1 + s∗0ξ(ξ0)) = 0.

The above analysis is not valid if (1 + s0ξ) and (1 + s∗0ξ) are simultaneously zero,
e.g. if κ in (2.21) is real. In this case, the series solution (2.22) becomes disordered in
the neighbourhood of ξ = ξ0 when ζ = O(t1/3). As a result, the scaling (2.26) and the
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expansions (2.27) need to be replaced by

ζ = ηΩt1/3 , Ω =

(
4(1 + σ01)

s02s
∗
02

)1/3

, (2.36)

and

s = s00 − ηΩt1/3 + 1
2
s02Ω

2A(η)t2/3 + . . . , (2.37a)

s∗ = s∗00 − ηΩt1/3 + 1
2
s∗02Ω

2B(η)t2/3 + . . . , (2.37b)

respectively. The revised similarity equations for A and B are

2A− ηAη = − 3

2Bη
, 2B − ηBη =

3

2Aη
, (2.38)

with boundary conditions

A→ η2 − 1

4η
+ . . . , B → η2 +

1

4η
+ . . . as η →∞ . (2.39)

As before no analytical solution could be found. However, three symmetry con-
ditions can be deduced from (2.38) and (2.39), namely (i) A(η) = A(η),
B(η) = B(η), (ii) A(−η) = B(η), B(−η) = A(η), and (iii) A(e2πi/3η) = e−2πi/3A(η),
B(e2πi/3η) = e−2πi/3B(η). Therefore the full solution can be constructed once a solution
has been found in any sector of the complex plane of angle of π/6.

In order to locate the singularities of (2.38) the same procedure as for (2.28) was
followed. First, (2.38) was differentiated to obtain a system of equations for Aη and
Bη . Next the far-field behaviour analogous to (2.29) was determined, and then we
numerically integrated inwards using a fourth-order Runge–Kutta method. Using
the integral diagnostics (2.32), we found a ring of six branch-point singularities of
3
2
-power located at

η6
0 ≈ −0.9685 . (2.40)

We believe that these are the primary singularities as far as the solution on the same
Riemann sheet as the physical real axis is concerned. In this case a search was not
made for singularities on the other Riemann sheets.

In order to confirm that a 3
2
-power singularity is feasible, we again note that

equations (2.38) admit a singularity of the form (2.34) for 1 < p < 2 if A1B1 6= 0 and

η2
0 = − 9

4A2
1B

2
1

6= 0 , A0 = 1
2
η0A1 − 3

4B1

, B0 = 1
2
η0B1 +

3

4A1

, 3Ap = 2η0A
2
1Bp .

(2.41)

2.5. Motion of the singularities

In the previous two sub-sections we have shown that for a range of initial conditions,
branch-point singularities of power 3

2
appear spontaneously in the complex plane at

time t = 0+. Since the singularities (2.33) and (2.40) are not at the origin of the
η-plane, it follows from (2.26) and (2.36) respectively that the singularities move away
from ξ = ξ0 as time increases. In this sub-section we show that for times t = O(1) the
singularities can continue to move around the complex plane.

Suppose that at time t a singularity is at ξ = ξs(t). Close to the singularity seek an
asymptotic expansion of the form

s = S0(t) + S1(t)η + Sp(t)η
p + . . . , (2.42a)

s∗ = S∗0 (t) + S∗1 (t)η + S∗p (t)ηp + . . . , (2.42b)
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where we now define η = ξ − ξs(t). On substituting (2.42) into (2.7) and (2.8), and
equating like powers of η, we find that (2.42) is an acceptable local solution if certain
consistency conditions are satisfied; for the functions specified in (2.42) these are

Ṡ0 − ξ̇sS1 = − Qs − S
∗
1

2(1 + S∗1 )
+K(ξs, t) , Ṡ∗0 − ξ̇sS∗1 =

Qs − S1

2(1 + S1)
+ J(ξs, t) , (2.43a)

ξ̇2
s = −

(
1 + Qs

2(1 + S1)(1 + S∗1 )

)2

, Sp =
2(1 + S1)

2S∗p
(1 + Qs) ξ̇s , (2.43b)

where Qs(t) = σξ(ξs(t)), and a ‘dot’ denotes differentiation with respect to time. For
small times (2.42), subject to (2.43), can be shown to match with (2.34), subject to
(2.35) or (2.41). We emphasize that this result holds for any fixed p for 1 < p < 2.

We conclude that 3
2
-power singularities generated spontaneously at t = 0+ can

move round the plane at later times. Moreover, (2.42) and (2.43) indicate that the
singularities will in general not change their power. A possible exception is when
two singularities collide; however Caflisch et al. (1993) have predicted on theoretical
grounds that both singularities remain intact after collision.

In the next section we will compute, inter alia, the motion of the singularities for
Krasny’s initial condition and demonstrate that for sufficiently small initial amplitudes
a pair collides on the imaginary ξ-axis. After the collision, we detect a singularity
of 3

2
-power approaching the real axis along the imaginary axis. However, what is

more important is that a singularity can collide on the real ξ-axis with its symmetric
counterpart from below the real axis. This event signals the occurrence of a 3

2
-power

physical singularity. Previous numerical studies (Krasny 1986a; Shelley 1992) provide
convincing evidence that 3

2
-power singularities reach the real ξ-axis in finite time. The

above analysis indicates that such 3
2
-power singularities can arise for a wide range of

initial conditions. We conclude that because such singularities can move around the
complex plane without change of power, and in particular can reach the real ξ-axis
in finite time, it is likely that Moore’s physical singularity will also be observed for a
wide range of initial conditions.

3. Numerical validation
The asymptotic results were confirmed by direct numerical solution of (2.2) using

the spectrally accurate, alternate point trapezoidal rule (Baker 1983; Shelley 1992),
and the spectral filtering technique introduced by Krasny (1986a). We used up to
512 points on the interface, with a time step of 0.001 in an Adams–Moulton fourth-
order predictor-corrector, and with the filter level set to 10−25. The calculations were
performed in double precision on a CRAY YMP.

We concentrate on the formation of singularities for the class of initial conditions
(2.21). The asymptotic theory predicts the formation of singularities where one or
more of the equations (2.9) is satisfied.

3.1. Moore’s initial condition

For Moore’s initial condition (κ = i), singularities form at

ξ = ±π
2
∓ i
(
ln
(
(1 + ε2)1/2 + 1

)− ln ε
)

+ 2mπ (m = . . . ,−1, 0, 1, . . .) , (3.1a)
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corresponding to 1 + s0ξ = 0, and at

ξ = ±π
2
± i
(
ln
(
(1 + ε2)1/2 + 1

)− ln ε
)

+ 2mπ (m = . . . ,−1, 0, 1, . . .) , (3.1b)

corresponding to 1 + s∗0ξ = 0.
Without loss of generality, we concentrate on the behaviour in one periodic window,
−π 6 Re(ξ) 6 π. According to (3.1), singularities form at ξ0, ξ̄0, −ξ0 and −ξ̄0, where

ξ0 =
π

2
+ i
(
ln
(
(1 + ε2)1/2 + 1

)− ln ε
)
. (3.2)

The symmetry in these positions reflects the symmetry in the initial condition. At
each of these locations, a pattern of singularities is generated as described by (2.26),
(2.27) (2.33) and (2.34). We are interested in those singularities that move towards
the real axis, and in particular the one that is closest to the real axis. By evaluating
(2.26) using (3.2) and the symmetry properties of A and B, we can determine that the
singularity in the vicinity of ξ0 which is initially closest to the real axis is at

ξ ∼ ξ0 − eiπ/4

(1 + ε2)1/4
η0 t

1/2 , (3.3)

where η0 is given by (2.33). There is of course no guarantee that of the singularities
initially formed at ξ = ξ0 this is the singularity that remains closest to the real axis
at later times. However, as indicated below, our numerical calculations suggest that
it is. As a result of the top/down, left/right symmetry, there are similar singularities
an identical distance from the real axis close to ξ̄0, −ξ0 and −ξ̄0.

In order to make a comparison between the asymptotic prediction (3.3) and our
numerical results, it is necessary to extract the position of the nearest singularity from
the numerical solution. This can be done from the Fourier spectrum of (z(ξ, t) − ξ),
because the presence of a pair of branch-point singularities of power (ν + iµ) placed
symmetrically on either side of the Im(ξ)-axis, say at ξs and −ξ̄s, means that the tail
of the Fourier spectrum for large positive k has the form

iA
k1+ν

exp(−Im(ξs)k) sin(Re(ξs)k + µ ln k + φ) , (3.4)

where A and φ are real constants (Carrier, Krook & Pearson 1966; Pugh 1989). A
derivation of the equivalent formula for large negative k is given in Appendix A (see
(A 6)) as part of the asymptotic analysis needed for § 4.

Following previous work (Krasny 1986a; Pugh 1989; Shelley 1992; Baker et al.
1993), we form-fit the numerically generated spectrum for (z(ξ, t) − ξ) to (3.4) for
large, positive k. The procedure used was that of Baker et al. (1993), which is a
refinement of Pugh’s (1989) approach. As is usual the estimates for the position ξs
are better than for the power (ν + iµ). However, we find ν = 3/2 and µ = 0 correct
to approximately one decimal place.

In figure 1, we show the trajectory of the singularity closest to the real axis both
as predicted by the asymptotic formula (3.3) and as calculated numerically. Only the
singularity in the strip 0 < Re(ξ) < π/2, Im(ξ) > 0 is shown. The trajectory from the
asymptotic theory, shown as a dashed line, is limited to the time interval [0, t1], where
t1 is the first time at which we can reliably detect the the presence of the singularity
in the numerical results. Results for three different amplitudes ε, as defined in (2.21),
are illustrated.

In plot (a) the amplitude is ε = 0.5. The singularity forms initially at π/2 + i1.444,
and we could first detect the presence of a singularity in the spectrum of the numerical
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Figure 1. The motion of the 3
2
-singularity in the complex ξ-plane as determined by a form-fit to

the Fourier spectra of the numerical solutions. Moore’s initial condition is used and the location
is shown as a sequence of circles connected by solid lines for three different initial amplitudes:
(a) ε = 0.5, (b) ε = 0.2, (c) ε = 0.1. Dashed lines show the corresponding motion as predicted by
asymptotic formula (3.3) for small times.

results at t1 = 0.1. The subsequent trajectory of the singularity is plotted as a sequence
of connected circles spaced 0.1 units of time apart. The numerical result is in fairly
good agreement with the asymptotic result at t = t1 (i.e. the end of the dashed line).

In plot (b) we show results for ε = 0.2. The singularity forms initially at π/2 + i2.312,
and we could first numerically detect the presence of the singularity at t1 = 0.3. Again
the agreement with the asymptotic prediction is reasonable, although it would no
doubt improve if we could reliably extract the position of the singularity at even
earlier times. However, when ε� 1, the singularity is far from the real axis at small
times, with the result that the exponential decay of the Fourier coefficients is very
rapid. Consequently rounding error prevents there being any range of large k over
which a reliable numerical form-fit can be done.

The problem of obtaining reliable form fits for small times is even worse for the
case ε = 0.1 – see plot (c). The singularity that forms at π/2 + i2.998 cannot be
reliably detected until t1 = 0.5. Consequently the agreement between the asymptotic
theory and the numerical results is less good. Finally we note that if ε were small
enough, then we would expect the singularity to collide with its mirror image on the
imaginary axis before reaching the real axis at ξ = 0. This possibility is numerically
confirmed for Krasny’s initial condition below.

3.2. Krasny’s initial condition

Krasny’s initial condition corresponds to taking κ = i−1 in (2.21). The pattern in the
singularities is then similar to that for Moore’s initial condition. Again singularities
initially form in the vicinity of four points, i.e. ξ0, −ξ0, ξ̄0 and ξ̄0, where in this case
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Figure 2. The same as figure 1, but for Krasny’s initial condition with (a) ε = 0.5, (b) ε = 0.2.

(cf. (3.2))

ξ0 = i ln

(
1 + (1− 2iε2)1/2

(1 + i)ε

)
. (3.5)

The trajectory of the singularity in the neighbourhood of ξ0 that is closest to the real
axis is given for small times from (2.26) and (3.5) as

ξ ∼ ξ0 −
(

2i

1− 2iε2

)1/4

η0 t
1/2 . (3.6)

We use the same procedure to form-fit the numerically generated spectrum. The
results are again consistent with 3

2
-branch point singularities. Using the symmetry

properties of the solution we restrict attention to the strip 0 < Re(ξ) < π/2, Im(ξ) > 0.
In figure 2 we show the trajectory of the singularity closest to the real axis for two
representative cases that show different behaviour. Plot (a) is for an amplitude ε = 0.5.
The singularity forms at 0.9046 + i1.0613, and we can reliably detect its presence for
t > t1 = 0.25; its subsequent motion is shown as connected circles placed at intervals
of 0.05 in time. The trajectory is similar to the ones illustrated in figure 1 in that it
reaches the real axis at ξ 6= 0.

Plot (b) is for ε = 0.2. The singularity forms at 0.8054 + i1.9566 and we can reliably
locate it for t1 = 0.25 6 t 6 0.7 and t > 0.85. For 0.7 < t < 0.85 it is difficult to fit the
spectrum to the form (3.4) because of the small value of Re(ξs); in particular we do
not have a sufficiently large range in k to detect accurately the gradual modulation in
the spectrum due to the sine function. However, after the singularity collides with its
mirror image when it reaches the imaginary axis, we can detect the singularity closest
to the real axis and confirm that it reaches ξ = 0 after a finite time. These results are
consistent with Krasny’s (1986a) observations that for large enough initial amplitudes
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the vortex sheet showed the formation of two symmetrically placed singularities, but
that for small enough amplitudes, there was only one centrally placed singularity.

4. An asymptotic solution for initially small sinusoidal perturbations
In this section we obtain an asymptotic solution to the Birkhoff–Rott equation

when the initial amplitude of the disturbance is small, i.e. ε� 1. For definiteness we
will concentrate on the cases where the solution is antisymmetric about, say, ξ = 0;
this is the case for initial conditions (2.14) and (2.21). We believe that the analysis
can be extended with slightly more effort to the general case provided that the initial
amplitude is small.

4.1. The solution far from the real axis

Following earlier authors, we identify the Lagrangian coordinate ξ with the circulation
Γ , so that σ(ξ) = 0. The main advantage of this approach is that equations (2.13)
then no longer have a variable coefficient σξ in them. The disadvantage is that
the MBO initial condition (2.14) is given implicitly. The numerical results of § 3, in
accordance with previous numerical results (Krasny 1986a; Shelley 1992), show that
the singularities approach the real axis along the imaginary axis when the initial
amplitude is sufficiently small. Therefore, following Moore (1985) and others, we
consider the solution on the imaginary axis, ξ = iy, and write f(y, t) = s(ξ, t). As
a consequence of the assumed antisymmetry, it follows that f(−y, t) = −f(y, t) and
f∗(y, t) = −s∗(ξ, t).

In the case of sinusoidal perturbations that are small, the singularities initially form
far from the real ξ-axis, i.e. in a region where (2.13) are leading-order asymptotic
approximations of the Birkhoff–Rott equation. In terms of f these equations become

ft =
if∗y

2(1 + if∗y)
, f∗t = − ify

2(1− ify)
. (4.1)

Following Moore (1985) this system can be further simplified by introducing the real
functions h(y, t) and g(y, t) defined by

1− ify =

(
he−ig

2

)1/2

, or equivalently 1 + if∗y =

(
heig

2

)1/2

. (4.2)

After differentiation with respect to y, system (4.1) becomes

ht = gy , h2gt = hy . (4.3)

We will focus on solutions to (4.3) with the initial conditions:

MBO: h =
2

(1 + ε cosh ζ)2
, g = 0, where y = ζ + ε sinh ζ; (4.4a)

Krasny: h = 2
(
1− 2ε cosh y + 2ε2 cosh2 y

)
, g = −2 arctan

(
ε cosh y

1− ε cosh y

)
; (4.4b)

Moore: h = 2
(
1 + ε2 cosh2 y

)
, g = −2 arctan (ε cosh y) . (4.4c)

The derivation of (4.3) depends on the assumption that y � 1. This assumption
can be made formal by writing

y = ln(1/ε) + Y , and ζ = ln(1/ε) + η . (4.5)
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Figure 3. The characteristics for the MBO initial condition. (a) The α-family. (b) The β-family.

Then

ht = gY , h2gt = hY , (4.6)

and the initial conditions become to leading order

MBO: h =
8

(2 + eη)2
, g = 0 , where Y = η +

eη

2
; (4.7a)

Krasny: h = 2− 2eY + e2Y , g = −2 arctan

(
eY

2− eY

)
; (4.7b)

Moore: h = 2 + 1
2
e2Y , g = −2 arctan

(
1
2
eY
)
. (4.7c)

As outlined in Appendix B, Professor D. W. Moore and Professor J. T. Stuart
(private communication) have obtained an exact solution to (4.6) by means of a
Hodograph transformation. We will employ their method to obtain the large time limit
of the solution. However, in order to appreciate fully the motion of the singularities,
it is also instructive to plot the characteristics of the hyperbolic system (4.6). This
system has the Riemann invariants

a(α) = heg and b(β) = he−g , (4.8)

which are constants along the characteristics

dY

dt
= −1

h
and

dY

dt
=

1

h
, (4.9)

respectively. The characteristic labels α and β can be defined through the initial
conditions. For instance, in the case of (4.7c) these can be fixed by requiring that
α = β = η at t = 0; whence

a(α) =
8

(2 + eα)2
, b(β) =

8

(2 + eβ)2
. (4.10)

Baker (1990) has previously obtained numerical solutions to (4.8)–(4.10). In figure 3
we illustrate both families of characteristics for the MBO initial condition. Not all
the characteristics used for the calculation are displayed. The results show clearly the
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formation of an envelope in the characteristics. The envelope marks out the trajectory
of the singularity in h and g (and s), as it moves in from infinity. The small-time
behaviour of this envelope is given by (2.20), while the large-time asymptotic position
of the singularity, Ys, is calculated in Appendix B. From (B 15), we see that

Ys ∼ − 1
2
t− ln t+ ln 4− 1 , (4.11)

while from (B 4), (B 16) and (B 17), we find that at the singularity

h = 2− 4

t
+ . . . , g = −2

t
+ . . . . (4.12)

Close to the singularity, it follows from (B 19) and (4.5), that the solution has the
form

sξ ∼ − (1− i)

t

(
1− (2iξ − t− 2 ln(εt) + 4 ln 2− 2)1/2 + . . .

)
. (4.13)

In order to compare these asymptotic predictions with our numerical calculations,
we determine the position of the envelope by seeking the nearest point along a β
characteristic where it changes direction abruptly (see figure 3b). We so obtain a
sequence of points that lie closely on the envelope. Then we use the method of
least squares to determine the coefficients in the form Y = c1t+ c2 ln t+ c3. The fit is
applied at a number of successive times, using 100 consecutive points to determine
the best fit. These coefficients are plotted in figure 4 as a function of the midpoint
of the time interval in which the local fit was made. We see that the coefficient c1

quickly settles to − 1
2

in agreement with the asymptotic result; similarly the coefficient
c2 appears to be approaching −1. However, while the coefficient c3 is decreasing
towards (ln 4 − 1), it is still much larger in value. This slow convergence is possibly
not surprising given that t must be very large in order for ln t to be large. We also
check the behaviour of h and g along the envelope and find that gt approaches −2
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very quickly, but that (2 − h)t approaches 4 slowly. Nevertheless, it seems that the
results are not inconsistent with the asymptotic predictions.

The asymptotic results (4.11) and (4.13) are for the MBO initial condition (4.7a).
To the order given they are the same as those found by Moore (1979, 1985) for initial
condition (4.7c). Further, using Moore’s (1985) method, Krasny (1986a) found that
for his initial condition, (4.7b), the only change in the expressions was in a constant,
i.e. (4.11) became

Ys ∼ − 1
2
t− ln t+ ln 2− 1 . (4.14)

However, Moore’s (1985) method of obtaining these expressions is based on finding
an asymptotic solution to (4.3) using the small parameter ε. Since we have seen
that ε can be scaled from the problem within the assumptions of the asymptotic
approximation, a (small) question mark hangs over Moore’s (1985) analysis and the
consequent results for initial conditions (4.7b) and (4.7c).

One way to confirm that these results are indeed correct, would be to find the
required large-time asymptotic expressions from the exact solution in the Hodograph
plane (cf. Appendix B). However, for initial conditions such as (4.7b) and (4.7c) for
which g 6= 0 at t = 0, this is non-trivial. As an alternative approach, we have recast
Moore’s (1985) analysis in terms of a large-time asymptotic solution to (4.6) using
the method of matched asymptotic expansions.† It turns out that the reason a self-
consistent large-time asymptotic solution can be found, is that both the characteristics
that intersect the singularity at large times intersect the Y -axis at asymptotically large
values of Y (at Y = O(ln t) and Y = O(t) for the α and β characteristics respectively).
It is for the same reason that the expressions for Ys are so similar for the different
initial conditions (4.7). While certain technical details of our solution differ from those
of Moore (1985), e.g. the order at which particular terms appear in the expansion,
the results (4.11), (4.13) and (4.14) stand.

As yet in this subsection, we have essentially only recovered Moore’s (1979, 1985)
results, albeit by more formal asymptotic means. However, as a result of our derivation
it is clear that such results can only be valid while the singularity is far from the real
ξ-axis. This is no longer true when t is sufficiently large that

ys ∼ ln(1/ε)− t

2
− ln(t) = O(1) . (4.15)

At this stage a new approach is necessary since the assumptions leading to (2.13) are
not justifiable.

Before considering the solution at such times, in figure 5 we show the families of
characteristics for the Krasny initial condition (4.7b). These were calculated using the
same numerical method as Baker (1990), and again not all characteristics used for
the calculation are displayed. Grid refinement suggests that the figure is graphically
accurate. This time we see four envelopes of characteristics. The envelopes develop
when singularities that were created at t = 0+, away from the imaginary axis, collide
on the axis (see figure 2). As a result of the four-fold symmetry in the solutions for
A and B given in § 2.4, more than one pair of singularities can collide. As illustrated
in figure 5, the first collision results in two envelopes representing singularities that
propagate in the direction of increasing Y . However, at a slightly later time, another
collision results in singularities that propagate in the direction of decreasing Y (i.e.
in the direction of the real axis). As noted by Moore (1985) and Caflisch et al.
(1993), once a collision has occurred the solution is multi-valued. The key part of the

† The analysis is available from the authors upon request.
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Figure 5. The characteristics for the Krasny initial condition. (a) The α-family. (b) The β-family.

solution as far as we are concerned is that part that is on the same Riemann sheet
as the physical solution at Y = − ln(1/ε). This means that it is the slower of the two
envelopes propagating in the direction of decreasing Y that determines the behaviour
on the real ξ-axis, i.e. it is the slower moving envelope that gives the trajectory of the
‘closest’ singularity to the real ξ-axis.

4.2. The solution as the physical singularity forms

As the singularity, and its complex conjugate, propagate towards the real ξ-axis,
their ‘amplitude’ as given by (4.13) decreases. Inter alia this means that when the
singularities are an order-one distance from the real ξ-axis, their effect on the interface
is still small; indeed the numerical results of Krasny (1986a) and Shelley (1992) show
that the interface is not significantly deformed. The combination of these facts
suggests that the evolution of the vortex sheet at this stage should be governed by
the linearized form of the Birkhoff–Rott equation (2.1).

The general solution of the linearized equation is well-known, so we just quote the
relevant results. If we express the solution as a Fourier series

s(ξ, t) =

∞∑
k=−∞

ŝk(t) exp(ikξ) , (4.16)

then the Fourier coefficients are given by

ŝk(t) = (1 + i)âk exp
(− 1

2
|k|(t− t0))+ (1− i)b̂k exp

(
1
2
|k|(t− t0)) , (4.17)

where âk and b̂k are constants such that â−k = â∗k and b̂−k = b̂∗k (the superscript ∗ here
denotes a complex conjugate). An arbitrary shift in time, t0, has been introduced as an
aid to subsequent matching. Further, if we assume that the solution is antisymmetric
about ξ = 0, i.e. that s(−ξ, t) = −s(ξ, t) as in § 4.1, then ŝ−k = −ŝk . This in turn implies

that â∗k = −âk and b̂−k = b̂∗k , i.e. that âk and b̂k are purely imaginary.
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The solution to the linearized equations is known once âk and b̂k have been specified.

For instance, if we were interested in the solution for times t = O(1), then âk and b̂k
can be determined from initial conditions such as (2.14) or (2.21); in the case of the
MBO initial condition (with t0 = 0), this leads to

âk = −b̂k =
ε

4πi

∫ π

−π
sin ξ(1 + ε cos ξ) sin (k(ξ + ε sin ξ)) dξ . (4.18)

While the solution given by (4.16) and (4.18) is valid for times t = O(1), it is not
uniformly valid for all time. As a result of cumulative nonlinear effects, the analysis in

§ 4.1 suggests that the ‘constants’ âk and b̂k have to be adjusted for times t− tε = O(1),
where tε � 1 is the solution of

tε + 2 ln(tε) = 2 ln(1/ε) . (4.19)

Hence, in order to describe the shape of the vortex sheet at the moment of singularity

formation, our task is to identify the coefficients âk and b̂k when t0 = tε. In fact for

our purposes it will be sufficient to find âk and b̂k for |k| � 1. Also, for definiteness
we will fix on the MBO and Moore initial conditions, for both of which (4.11) and
(4.13) are asymptotic approximations.

Since tε � 1, we introduce a shifted time

t = tε + τ . (4.20)

Then for large negative times τ such that 2 ln ε � τ � −1, we know from matching
to (4.13) that, in the neighbourhood of the singularity closest to the real ξ-axis, sξ has
the leading-order behaviour

sξ ∼ i− 1

tε

(
1− (2iξ − τ+ 4 ln 2− 2)1/2 + . . .

)
. (4.21)

Further, in Appendix A we show that if the singularity of s closest to the real ξ-axis
has a branch-point singularity of the form (4.21), then the tail of the Fourier spectrum
satisfies (see (A 5))

ŝk ∼ 1 + i

(2π)1/2tε
k−5/2 exp

(
k
(

1
2
τ− ln 4 + 1

))
for k � 1 . (4.22)

The Fourier coefficients for k large and negative follow from the antisymmetry

condition ŝ−k = −ŝk . The constants âk and b̂k for |k| � 1 can now be fixed, at least to
leading order, by matching (4.22) with (4.17). In particular, we conclude that âk = 0
if the solution is not to grow exponentially as τ→ −∞, and that

b̂k =
i

(2π)1/2tε
k−5/2 exp (k (1− ln 4)) for k � 1 . (4.23)

Consequently it follows that for |k| � 1, the Fourier coefficients ŝk are given by
(4.22) for finite times τ = O(1), as well as for large negative times 2 ln ε � τ � −1.
Further, it is evident from (4.16) and (4.22) that the solution ceases to be analytic at
τ = τs ≡ 2(ln 4− 1).

Although we have not found the values of the b̂k for k = O(1), it is still possible to
determine the shape of the vortex sheet in the neighbourhood of the singularity for
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(τs − τ)� 1. In particular we note that

sξξ = −2i

∞∑
k=1

k2ŝk sin kξ

∼ −2i

K∑
k=1

k2ŝk sin kξ +
1− i

tε

∞∑
k=K+1

(
2

πk

)1/2

exp
(− 1

2
k (τs − τ)) sin kξ , (4.24)

where K is a constant chosen such that 1 � K � (τs − τ)−1. For (τs − τ) � 1, the
dominant contribution to sξξ comes from the second sum in (4.24). By approximating
the sum by a Riemann integral (Bender & Orszag 1978), we thus find that in the
vicinity of the curvature singularity

zξξ = sξξ ∼ 2(1− i)

(τs − τ)1/2tε

sin
(

1
2

arctan(2χ)
)

(4χ2 + 1)1/4
(4.25)

∼ 2e−iπ/4

(τs − τ)1/2tε

(
(4χ2 + 1)1/2 − 1

4χ2 + 1

)1/2

, (4.26)

where χ = ξ/(τs − τ) and 0 < (τs − τ)� 1. It follows that at τ = τs

zξξ ∼ (1− i) sgnξ

tε|ξ|1/2 for |ξ| � 1 . (4.27)

By focusing attention on each singularity individually, Moore (1979) has previously
given an expression for z valid in the neighbourhood of a (complex) singularity.
However, his equation (5.5) includes an unknown function ψ(χ) that makes a signif-
icant contribution to z, and thence to zξξ , when χ is real. By correctly including the
effects of both singularities on either side of the real ξ-axis simultaneously, we have
been able to calculate the leading-order contribution to this function ψ. Even so, the
influence of the singularities on each other is not particularly strong; in particular
they seem to have little influence on the speed that each moves at.† As a result Moore
(1979) accurately predicted the time of singularity formation, ts = tε + τs, without the
need to consider both singularities simultaneously.

We test the asymptotic solutions by direct comparison with numerical simulations
of (2.2) for the MBO initial condition with ε = 0.5, 0.05, 0.005. We use the same
numerical method as described in § 3. In each case, we use a filter level of 10−25,
and start with N = 32 or N = 64 points. The filter level ensures that there is a
wavenumber above which the amplitudes are set to zero. Whenever this wavenumber
approaches N/2 we double the number of points; table 1 gives example ranges in
time over which different spatial resolutions and time steps were used. Following
Shelley (1992) we form fit

iA
k5/2

exp(−Im(ξs)k)

(
1 +
B
k

)
(4.28)

to the spectrum of x(ξ)− ξ and y(ξ). This is the simplified form of (A 3) appropriate
for the case where µ = 0 and Re(ξs) = 0, but with an additional factor to represent
the next-order correction. For this part of the calculation we have also assumed
that ν = 3/2. These changes and refinements help in obtaining A and Im(ξs) more
accurately. The symmetry in x(ξ) and y(ξ) results in both A and B being real.

† This is of course consistent with our linearization assumption.
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ε N Range in time Time step

0.5 64 0 6 t 6 0.6 0.0025
128 0.6 6 t 6 1.1 0.0025
256 1.1 6 t 6 1.35 0.0025
512 1.35 6 t 0.0025

0.05 64 0 6 t 6 2.4 0.0025
128 2.4 6 t 6 3.3 0.0025
256 3.3 6 t 6 3.7 0.0025
512 3.7 6 t 0.0025

0.005 32 0 6 t 6 3.0 0.01
64 3.0 6 t 6 5.4 0.01
128 5.4 6 t 6 6.4 0.005
256 6.4 6 t 6 7.0 0.005
512 7.0 6 t 0.005

Table 1. Choice of numerical parameters.

In figure 6, we show Im(ξs), the location of the singularity on the imaginary axis,
as a function of time for both the numerical solution to (2.2) and the asymptotic
prediction (4.11):

Im(ξs) = − 1
2
t− ln(εt) + 2 ln(2)− 1 . (4.29)

As might be expected, the agreement between theory and numerical results improves
as ε decreases. While the asymptotic prediction of the speed at which the singularity
approaches the real axis is good, the prediction of the position tends to be too low.
However it should be remembered that the asymptotic results depend on (ln(1/ε))−1

being small, and (ln(1/ε))−1 = 0.19 for ε = 0.005.
We delay a discussion of our numerical estimates of the coefficient A until after

our discussion in § 5 of the form of the physical singularity for finite-amplitude
disturbances.

5. The local form of the curvature singularity
The arguments leading up to (4.25) refer specifically to small-amplitude disturbances

to a vortex sheet, such that the sheet remains flat to leading order up until the
singularity forms. However, a generalization of (4.25) for the local structure of the
singularity can be derived for larger deformations of the sheet.

As in § 4, identify the Lagrangian coordinate ξ with the circulation (so that Γξ = 1).
Without loss of generality assume that the singularity forms at t = 0 and ξ = 0, and
that the surface is moving with a velocity ż0 at that point. We also assume that at the
time of singularity formation, the surface is locally flat in the neighbourhood of the
singularity, with z ∼ λξ, where λ is a complex number.

The asymptotic expansion of the solution to the Birkhoff–Rott equation (2.2)
sought for t � 1 has two regions: a local region where ξ = O(t), and an extensive
region covering the rest of the sheet. In order to determine the local shape of the
vortex sheet near the singularity, it is not necessary to consider the extensive region
in detail, other than to note that in a Taylor expansion of z(ξ, t) in powers of t, it is
consistent to assume that the first two terms of the asymptotic expansion are O(t0)
and O(t1) respectively; this assumption may be justified a posteriori.

As regards the local sheet shape in the region near the singularity, the key stage in
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Figure 6. The location of the ‘nearest’ singularity on the imaginary axis for the MBO initial
condition. We show three choices for ε: (a) 0.5, (b) 0.05, (c) 0.005. ×, Numerical simulations; —,
the asymptotic prediction (4.11).

the derivation of an asymptotic solution is the asymptotic evaluation for |ξ| � 1 of
the Cauchy integral in (2.1). To this end, we split the integral into three parts:

−
∫ ∞
−∞

dξ̂

z(ξ, t)− z(ξ̂, t) =

{∫ −δ
−∞

+ −
∫ δ

−δ
+

∫ ∞
δ

}
dξ̂

z(ξ, t)− z(ξ̂, t) , (5.1)

where |ξ| � δ � 1.
Initially we concentrate on the first and third integrals on the right of (5.1). As a

result of the assumptions (a) that near the singularity the vortex sheet is approximately
flat, and (b) that away from the singularity the first two terms of the asymptotic
expansion for z are O(t0)and O(t1), it follows that the leading-order contribution from
the first and third integrals is O(t0). Specifically for |ξ| � δ and |t| � 1,{∫ −δ

−∞
+

∫ ∞
δ

}
dξ̂

z(ξ, t)− z(ξ̂, t)
=

{∫ −δ
−∞

+

∫ ∞
δ

}
1

z(0, t)− z(ξ̂, t)
(

1− z(ξ, t)− z(0, t)
z(0, t)− z(ξ̂, t) + . . .

)
dξ̂

=

{∫ −δ
−∞

+

∫ ∞
δ

}
1

z(0, 0)− z(ξ̂, 0)

(
1− λξ

z(0, 0)− z(ξ̂, 0)
+ . . .

)
dξ̂

= −
∫ ∞
−∞

dξ̂

z(0, 0)− z(ξ̂, 0)
− −
∫ δ

−δ
dξ̂

z(0, 0)− z(ξ̂, 0)
+ O

(
|t|, |ξ|

δ

)
, (5.2)
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where the second integral is O(δ) or smaller as a result of the assumption that near
the singularity the vortex sheet is approximately flat.

We now concentrate on the second integral on the right-hand side of (5.1), because
it is this integral that determines the shape of the vortex sheet in the neighbourhood
of the singularity. In order to obtain an asymptotic approximation of this integral,
we first rescale it using

z = ż0|λ|2τ+ λ(ξ + s(ξ, τ)) , t = |λ|2τ , (5.3)

where s is slightly redefined from (2.4). The second integral then becomes

−
∫ δ

−δ
dξ̂

z(ξ, t)− z(ξ̂, t) =
1

λ
−
∫ δ−ξ

−δ−ξ
dζ

s(ξ, τ)− s(ξ + ζ, τ)− ζ
=

1

λ
−
∫ δ−ξ

−δ−ξ
s(ξ + ζ, τ)− s(ξ, τ)

ζ + s(ξ + ζ, τ)− s(ξ, τ)
dζ

ζ
− 1

λ
ln

(
δ − ξ
δ + ξ

)
, (5.4)

where the final result follows from the identity

−
∫ δ−ξ

−δ−ξ
dζ

ζ
= ln

(
δ − ξ
δ + ξ

)
. (5.5)

On substitution of (5.3) into the Birkhoff–Rott equation (2.2), it follows from using
(5.1), (5.2), (5.4) and the assumption that ξ and s are small, that to leading order in
powers of τ and δ,

ż0 = −
∫ ∞
−∞

dξ̂

z(0, 0)− z(ξ̂, 0)
; (5.6)

i.e. the sum of the first and third integrals in (5.1) essentially balances the ż0 term
representing the velocity with which the singularity is moving.

At second order in powers of τ, a scaling argument demonstrates that for a balance
between the left- and right-hand sides to occur, the appropriate inner coordinate is
(cf. (4.25))

ξ = (−τ)χ . (5.7)

A similarity solution to the Birkhoff–Rott equation in the neighbourhood of the
singularity is now sought of the form

s = (−τ)qF(χ) + . . . , (5.8)

where q > 1 in order to be consistent with the sheet being locally flat in the
neighbourhood of the singularity. For simplicity we also assume that q < 2, because
otherwise extra book-keeping terms need to be included in (5.2) and (5.8). We note
that the curvature singularity discussed in the previous sections corresponds to q = 3

2
.

From use of (5.1)–(5.4) and (5.6)–(5.8), the asymptotic expansion of the Birkhoff–
Rott equation (2.2) at O(τq−1) yields

χF̄χ − qF̄ =
1

2πi
−
∫ ∞
−∞

F(χ+ η)− F(χ)

η2
dη . (5.9)

We note that for the book-keeping that is required for asymptotic matching, the
O(τq−1) term is not necessarily the second term in the asymptotic expansion of this
inner region. For instance, if z is not antisymmetric about ξ = 0, then there will be
a larger O(δ) term from, inter alia, the second integral in (5.2). However, because
the final answer cannot depend on the artificial parameter δ, we know that such
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terms must cancel to zero (although the algebra needed to identify the cancellation
may be non-trivial). In the special case when z is antisymmetric about ξ = 0, the
O(τq−1) term is the second term in the asymptotic expansion if we choose δ such that
(−τ)2−q � δ � 1.

In order to match with the ‘outer’ region where ξ = O(1), we anticipate that
F ∼ F±|χ|q as χ→ ±∞, where F± are constants. Also, if the integral in (5.9) is to be
well defined, we require that F− = −F+, i.e. that to leading order the function F is
antisymmetric as |χ| → ∞.

Equation (5.9) can be solved by splitting into real and imaginary parts. Writing
F = Fr + iFi, we substitute into (5.9) and integrate by parts to obtain

χG′+ − qG+ =
1

2π
−
∫ ∞
−∞

G′+(η)

η − χ dη , (5.10)

χG′− − qG− = − 1

2π
−
∫ ∞
−∞

G′−(η)

η − χ dη , (5.11)

where

G± = Fr ± Fi . (5.12)

Let the Fourier transform of G± be defined by

Ĝ±(k) =

∫ ∞
−∞
G±(χ) exp(−ikχ) dχ . (5.13)

Relatively straightforward algebraic manipulation of (5.10) and (5.11) using general-
ized functions leads to the conclusion that for k > 0

Ĝ± = G±k−q−1 exp
(±k/2) , (5.14)

where the G± are arbitrary complex constants. Since the G±(χ) are real, the solution

for k < 0 is given by Ĝ±(k) = Ĝ∗±(−k), where the superscript ∗ here denotes a complex
conjugate.

In order that the Fourier transforms be invertible, we conclude that G+ = G+ = 0.

Performing the inversion for Ĝ−, and imposing the condition that at leading order
F is antisymmetric as |χ| → ∞, we conclude from (5.12), (5.13) and (5.14) that in
the neighbourhood of the singularity, the departure of shape of the interface from a
straight line is given by

F = γ(1− i)(4χ2 + 1)q/2 sin(q arctan(2χ)) , (5.15)

where γ = −i2−qΓ(−q)G− is a real constant (G− is purely imaginary).
Hence a self-consistent interface shape has been found for 1 < q < 2. Further it

appears that the value of q is not fixed by higher-order terms. Indeed, depending
on the initial condition, singularities of varying forms can develop on the interface
(Duchon & Robert 1988; Caflisch & Orellana 1989; Caflisch & Semmes 1990).
However, for the class of initial conditions studied in § 2, we would anticipate that
q = 3/2, in which case it follows from (5.3), (5.7), (5.8) and (5.15) that (cf. (4.25))

zξ ∼ λ+ 3γ(1− i)λ(−τ)1/2(4χ2 + 1)1/4 cos
(

1
2

arctan(2χ)
)
, (5.16a)

zξξ = λsξξ ∼ 3
√

2γλ exp(−iπ/4)(−τ)−1/2(4χ2 + 1)−1/4 sin
(

1
2

arctan(2χ)
)
. (5.16b)

These expressions possibly provide an explanation of Shelley’s (1992) observation
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ε ts λ γ

0.5 1.614 0.4491 exp(i0.7990) 0.1930−i 0.0033
0.2 2.495 0.5576 exp(i0.6364) 0.2044−i 0.0076
0.05 4.145 0.6749 exp(i0.4338) 0.1760−i 0.0055
0.005 7.476 0.7623 exp(i0.0261) 0.1246−i 0.0242

Table 2. The singularity time, vortex-sheet slope and numerical strength of the curvature
singularity for different disturbance amplitudes.

that when ε = 0.5 in the MBO initial condition (2.14), the nature of the singularity
in the real variable y = Im(z) seems to be different from that in the real variable
x = Re(z). To this end we note from (5.16) that if the vortex sheet is inclined at 45◦
to the horizontal at the point where the singularity forms, i.e. if arg(λ) = π/4, then
the leading-order branch-cut singularity will only be evident in x, and not in y. Hence
an explanation of Shelley’s (1992) observation follows if the vortex sheet is inclined
at approximately 45◦ when the singularity forms for ε = 0.5.

In order to confirm this prediction we have repeated Shelley’s (1992) numerical
calculations for the MBO initial condition (2.14). We estimate the singularity time ts
by using a least-squares form-fit,

t = ts + aIm(ξs) + bIm(ξs)
2 + cIm(ξs)

3 , (5.17)

to the numerical results shown in figure 6. We vary both the number of data points
(typically seven), and the number of terms in the form-fit, in order to assess the
sensitivity of the results. Once ts is known, we perform a least-squares form-fit of our
numerical results for zξ(0, t) to the asymptotic prediction from (5.16a):

zξ(0, t) = λ+ 3γ(1− i)
λ

|λ| (ts − t)
1/2 + . . . . (5.18)

In particular values of the derivative for typically seven times close to singularity
formation are form-fitted to a complex-coefficient, fourth-order polynomial in powers
of (ts − t)1/2. In table 2, we give results for ts, λ and γ for several choices of ε.

The accuracy of these results is difficult to assess because there are several places
where errors can occur. This is especially so given that the singularity time ts is
determined by a form-fit to results that are obtained by a form-fit to a numerical
solution, and that λ and γ are then found from a form-fit involving ts. Our checks
show that changes in the resolution used in the calculation of the vortex sheet produce
variations mostly in the third digit, as do variations in the number of terms and points
used in the form-fits (the form-fit for ts being the most reliable). The exception is
the case ε = 0.005, where the length of the time integration gives data that lead to
uncertainty in the second digit.

A key test of the asymptotic theory, and our explanation of Shelley’s (1992)
observation, is that γ should be real; the results for Im(γ) in table 2 confirm that this
is the case within the uncertainties in the numerical results. Moreover for ε = 0.5 we
note that the vortex sheet is inclined at approximately 45◦ when the singularity forms.
Thus, our numerical results are consistent both with the asymptotic theory, and with
our explanation of why the singularity in y appears to be different from that in x
when ε = 0.5.
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6. Conclusions

One of the motivations for this paper was a desire to understand the asymptotic
shape of the vortex sheet just prior to the formation of Moore’s curvature singularity.
In due course we hope that an accurate knowledge of this shape will aid in the
understanding of the motion of the vortex sheet in the case of regularized, or well-
posed, modifications of the problem.

In pursuing our aim we have obtained an asymptotic solution for the evolution of
small sinusoidal disturbances to a vortex sheet up to the time at which the curvature
singularity develops. Inter alia, this has enabled us to obtain the shape of the vortex
sheet as the singularity develops. In particular we have identified the function ψ left
unspecifed in equation (5.5) of Moore’s (1979) paper.

Without necessarily assuming that the vortex sheet is only slightly deformed, we
have also found a local asymptotic description of a family of curvature singularities. A
feature of this family of singularities is that the interface shape is governed by a linear
equation, i.e. (5.9). The local analysis in § 5 does not uniquely specify the strength
of the singularity – a property that depends, inter alia, on the initial conditions. For
instance, if at t = 0 a singularity with q > 1 exists in the complex ξ-plane, the
singularity can in principle propagate towards, and then intersect, the real ξ-axis
without changing its strength (Duchon & Robert 1988; Caflisch & Orellana 1989;
Caflisch & Semmes 1990). However, we have also shown in § 2, that even if there are
no complex singularities in the initial condition at t = 0, singularities with q = 3/2 can
spontaneously develop at t = 0+. As for the local singularity analysis in § 5, this result
does not depend on the initial disturbance to the vortex sheet being small. Further, we
believe that this spontaneous development of 3

2
-power singularities at t = 0+ means

that such singularities are possibly the most likely to be seen in practice. However,
as a note of caution we recall that our analysis is based on the assumption that the
integrals (2.7b) and (2.8b) do not contribute to the singularity structure. As indicated
in § 2.1 this might not always be the case if the integration contour cannot be suitably
deformed.

Finally we note a paradox. Viewed as a problem on the real ξ-axis, the evolution
of small sinusoidal disturbances of amplitude ε to a vortex sheet is initially a linear
problem. Then over a time t = O(ln(1/ε)) the cumulative effect of nonlinearity is to
generate a Moore curvature singularity. However, viewed in appropriate parts of the
complex plane, the problem is nonlinear for t = O(1) (including of course the crucial
spontaneous formation of singularities at t = 0+) and linear thereafter!
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Figure 7. The integration contour for (A 1).

Appendix A. The tail of the Fourier spectra
As shown in Carrier et al. (1966), the presence of singularities in the complex plane

determine the dominant behaviour of the Fourier coefficients for large |k|. We briefly
review their analysis by considering the integral

Ĥk =
1

2π

∫ π

−π
H(ξ)e−ikξ dξ =

1

2π

∫
L
H(ξ)e−ikξ dξ , (A 1)

for which singularities of H in the upper/lower half-plane determine the tail of
the Fourier spectrum for negative/positive values of k respectively. We consider the
contourL illustrated in figure 7 and focus on large negative values of k. Branch-point
singularities are assumed to be present at the locations marked with ‘×’. The contour
goes around these singularities as shown, and along either side of their branch cuts.
Only two such singularities are illustrated, but there could be any finite number of
them without affecting the following results. We assume that in the neighbourhood
of the singularity closest to the real axis

H ∼H(ξ)(ξ − ξs)ν+iµ +I(ξ) , (A 2)

whereH(ξ) and I(ξ) are analytic at ξ = ξs. No singularity other than those marked
in figure 7 is assumed to be present.

The two choices for H(ξ) that we consider are s(ξ, t) and sξ(ξ, t) for some fixed t.
In either case, H(ξ) is 2π-periodic, so the contributions fromL−π andLπ cancel. On
the assumption that the branch-point singularities have powers greater than −1, the
contributions from the integrals Lp

1 and Lp
2 also vanish as these contours shrink to

zero radius.
Further, for k < 0 and |k| � 1 the leading-order contribution to the integral comes

from the asymptotically small section of these remaining contours closest to the real
ξ-axis. In particular, if the singularity closest to the origin at ξ = ξs is enclosed by
Lp

2, it follows from considering the lower ends of the contours Lr
2 and Ll

2 that

Ĥk ∼ −H(ξs)e
−ikξs−i(ν+iµ)π/2

π(−k)1+ν+iµ
sin((ν + iµ)π)Γ(ν + iµ+ 1) , (A 3)
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where Γ is the Gamma function (rather than the circulation). Because the rate of
decay in the exponential is determined by the distance of the singularity from the
real ξ-axis, the contribution from the singularity closest to the real ξ-axis dominates
contributions from other singularities. Similarly contributions from LL are also
asymptotically smaller than (A 3) as long as (L− Im(ξs))� |k|−1.†

There are two different circumstances where we will use (A 3). The first occurs when
the singularity lies on the imaginary axis and µ = 0. In particular, the singularity in
(4.21) has the form of (A 2) with H(ξs) = 2/tε, ξs = (−τ/2 + ln 4− 1)i and ν = 1/2.
Hence the tail of the Fourier spectrum has the asymptotic behaviour

ikŝk ∼ − (1− i) exp(−k( 1
2
τ− ln 4 + 1)

(2π)1/2tε(−k)3/2
for k < 0, |k| � 1 . (A 4)

From the antisymmetry condition ŝk = −ŝ−k it follows that

ŝk ∼ (1 + i) exp
(
k
(

1
2
τ− ln 4 + 1

))
(2π)1/2tεk5/2

for k � 1 . (A 5)

The other time we use (A 3) is when singularities occur at ξs and −ξ̄s. From the
symmetry properties, and the definition of s∗, we have that s∗(−ξ̄s) = s(−ξs) = −s(ξs).
Hence if s and s∗ have singularities of power (ν + iµ) at ξs, they have singularities of
power (ν − iµ) at −ξ̄s. Further, the Fourier coefficients take their simplest form if we
consider quantities that are real on the real ξ-axis, e.g. H = 1

2
(s+s∗); the antisymmetry

then implies that H(−ξ̄s) = −H(ξs) exp(i(ν − iµ)π). By adding two contributions of
the form (A 3), we find that for k < 0, |k| � 1, the tail of the spectrum has the
asymptotic form

Ĥk ∼ 2iP
π(−k)1+ν

exp(Im(ξs)k) sin (Re(ξs)k + µ ln(−k) + φ) , (A 6)

where the real constants P and φ are given by

Pe−iφ =H(ξs)e
−i(ν+iµ)π/2 sin((ν + iµ)π)Γ(ν + iµ+ 1) . (A 7)

The form of the tail for k � 1 follows from the antisymmetry condition Ĥ−k = −Ĥk .

Appendix B. The long-time behaviour of the envelope
Professor D. W. Moore and Professor J. T. Stuart (private communication) use

the Hodograph transformation to solve (4.6) for Moore’s initial condition. We follow
their approach for the MBO initial condition.

By interchanging the independent and dependent variables, the governing equations
in the Hodograph plane are found to be

∂t

∂h
=
∂Y

∂g
and

∂Y

∂h
=

1

h2

∂t

∂g
, (B 1)

subject to the ‘initial’ conditions on g = 0

t(0, h) = 0 and Y (0, h) = η + 1
2
eη , (B 2)

† The asymptotic behaviour of s(ξ, t) for arbitrary large Im(ξ) is sometimes hard to identify.
This is because the spontaneous generation of singularities at t = 0+ might lead to instantaneous
significant departures from the initial condition at large values of Im(ξ) (e.g. Kunka, Foster &
Tanveer 1997). Without loss of generality we therefore also assume that (L− Im(ξs)) = O(1).
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where

eη = 2((2/h)1/2 − 1) for 0 6 h 6 2 . (B 3)

We introduce new variables

h = 2e−2ρ , g = −2v , t = e−ρt̂(ρ, v) , (B 4)

and eliminate Y to obtain the Klein–Gordon equation

∂2t̂

∂ρ2
− ∂2t̂

∂v2
− t̂ = 0 . (B 5)

From (B 1)–(B 3) the initial conditions become

t̂(0, ρ) = 0 ,
∂t̂

∂v
(0, ρ) =

1

1− exp(−ρ)
for 0 6 ρ < ∞ . (B 6)

By using Riemann’s method of characteristics (e.g. Ince 1987), the solution may be
expressed as

t̂(ρ, v) =

∫ ρ+v

ρ−v
J0 (r(s; ρ, v))

1− exp(−s) ds , where r(s; ρ, v) = (v2 − (s− ρ)2)1/2 , (B 7)

where J0 is the Bessel function of zero order. We are interested in the solution for
t̂ > 0. To this end we note from (B 6) that ∂t̂/∂v > 0 on v = 0. This suggests that we
should examine the solution in the region of coordinate space 0 6 v 6 ρ.

Our aim is an analytical expression for large times of the nature of the envelope
in figure 3. Since t̂ is large when ρ − v � 1, it is helpful to change the integration
variable in (B 7) to p = s− ρ+ v, to obtain

t̂ =

∫ 2v

0

J0 (r̂(p; v))

1− exp(v − ρ− p) dp , (B 8)

where r̂2(p; v) = 2vp− p2. We will also need an expression for Y ; from (B 1) and (B 4)
we obtain

∂Y

∂v
= 1

2
eρ
(
∂t̂

∂ρ
− t̂
)
, (B 9)

and hence

Y = η + 1
2
eη − 1

2
eρ
∫ v

0

dq

∫ 2q

0

dp
J0 (r̂(p; v))

(1− exp(v − ρ− p))2
, (B 10)

where eη = 2(eρ − 1).
The numerical results in § 4 indicate that h = 2e−2ρ ≈ 2 on the envelope at large

times. Hence we now asymptotically expand (B 8) and (B 10) on the assumption that
0 6 v 6 ρ� 1, to obtain

t̂ ∼ ln(ρ+ v)− ln(ρ− v) + v , (B 11)

and

Y ∼ 1
2
(ln(ρ+ v) + ln(ρ− v)) + ln 2− 1

2
v(ln(ρ+ v)− ln(ρ− v)) . (B 12)

Using (B 4), we find that

Y ∼ − 1
2
t+ ln(ρ+ v) + ln 2− 1

2
(ρ+ v)t . (B 13)

The envelope occurs where the determinant of the Jacobian of the mapping vanishes,
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i.e. where
∂t

∂h

∂Y

∂g
=
∂t

∂g

∂Y

∂h
.

Using (B 1) to eliminate the derivatives of Y , we can write this result in terms of the
new variables as

∂t̂

∂v
= ±

(
∂t̂

∂ρ
− t̂
)
.

From (B 11) this condition can in turn be written at large times as

2ρ

ρ2 − v2
+ 1 ∼ ±

(
− 2v

ρ2 − v2
− ln(ρ+ v) + ln(ρ− v)

)
.

If this expression is to have a solution with 0 6 v 6 ρ, then the lower sign must be
taken. Further, we conclude from (B 4) and (B 11), that on the envelope

(ρ− v)� ρ , and
2

ρ+ v
∼ (1 + ρ)t+ 1 . (B 14)

On substituting (B 11) and (B 14) into (B 12), we find that the position of the singu-
larity, Ys, is given by

Ys ∼ − 1
2
t− ln t+ ln 4− 1 . (B 15)

In order to determine the nature of the singularity, we first note from (B 14) that
ρ ∼ 1/t at the singularity. We therefore introduce a scaled variable ρ̂ measured from
the singularity

ρ =
(1− ρ̂)

t
, where 0 < ρ̂� 1 . (B 16)

From (B 4) and (B 11) it follows that

ρ− v = O(exp(−t)/t) , (B 17)

and hence from (B 13), (B 15) and (B 16) that

Y ∼ Ys − 1
2
ρ̂2 . (B 18)

We thus conclude from (4.2), (B 4), and (B 16)–(B 18) that close to the singularity

sξ = −1 + exp(−ρ+ iv) ∼ −ρ+ iv ∼ (i− 1)

t

(
1− (2(Ys − Y ))1/2

)
, (B 19)

where the choice of branch of the square-root ensures that the solution is on the same
Riemann sheet as the physical domain (corresponding to Y → −∞).
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